Nature Paper: Theoretische Biologie deckt neuen Mechanismus der Flugsteuerung in Fruchtfliegen auf/Theoretical biologists uncover novel mechanism for flight control in fruit flies

Forschende der Theoretischen Biologie der Humboldt Universität konnten ein jahrzehntealtes mathematisches Rätsel um die Entstehung elektrischer Aktivitätsmuster während des Insektenflugs lösen. Gemeinsam mit Kolleg:innen an der Johannes Gutenberg-Universität Mainz berichten sie dabei in der aktuellen Ausgabe der Zeitschrift Nature von einer neuen Funktion elektrischer Synapsen, die während des Flugs von Fruchtfliegen zum Einsatz kommt.

Um ihren kleinen Körper zum Abheben zu bringen und in der Luft zu halten, müssen Fruchtfliegen extrem schnell mit ihren Flügeln schlagen. Dabei bedienen sie sich eines im Tierreich weit verbreiteten Tricks: die Nervenzellen halten nicht mit dem Tempo der Flügel mit, sondern jede Nervenzelle erzeugt nur etwa jeden zwanzigsten Flügelschlag einen elektrischen Puls, mit dem die Flugmuskeln angesteuert werden. Dieser Puls ist jedoch präzise auf das Zusammenspiel mit anderen Nervenzellen abgestimmt. In einem kleinen Schaltkreis aus wenigen Nervenzellen werden dabei besondere Aktivitätsmuster generiert: jede Zelle feuert zwar regelmäßig Pulse, jedoch nicht zeitgleich zu den anderen Zellen, sondern in festen zeitlichen Abständen zueinander.

In der Fruchtfliege sind solche Aktivitätsmuster bereits seit den 70er Jahren bekannt. Ihr Entstehen wurde bislang auf eine Verschaltung der Nervenzellen mittels chemischer Synapsen zurückgeführt. Es wurde angenommen, dass auf Pulse hin hemmende Botenstoffe zwischen Nervenzellen ausgeschüttet werden und die Zellen sich so gegenseitig an der zeitgleichen Erzeugung von Pulsen hindern. Mittels mathematischer Analysen konnte das Team um Prof. Susanne Schreiber nun allerdings zeigen, dass eine solche puls-verteilte Aktivität auch auftreten kann, wenn die Nervenzellen nicht chemisch, sondern direkt elektrisch – also ohne den Einsatz von Botenstoffen - verschaltet sind. Die Zellen müssen dabei eine besondere Art von Puls erzeugen, bei dem sie sich gegenseitig sehr gut „zuhören“ - insbesondere dann, wenn sie selbst gerade aktiv waren. Bei „normalen“ Pulsen ist dies nicht der Fall und daher ist dann bei rein elektrischer Übertragung auch keine puls-verteilte Aktivität zu erwarten.

Experimentelle Nachweise für die von den Berliner Forschenden vorhergesagte Art der Pulserzeugung wurden in der Arbeitsgruppe von Prof. Carsten Duch erbracht. Die Mainzer Wissenschaftler:innen verstärkten oder schwächten bestimmte Ionenströme in den Zellen der Fruchtfliege, um die Art der Pulse zu verändern. Sie konnten zeigen, dass dadurch die Aktivitätsmuster im Flugschaltkreis – genau wie im mathematischen Modell vorausgesagt – beeinflusst wurden. Zudem wiesen sie nach, dass die Verschaltung der Zellen tatsächlich elektrisch erfolgt und auch eine Störung dieser Kopplung die erwarteten Auswirkungen auf Aktivitätsmuster und Flügelschlag der Tiere hat.

Der Befund des Berlin-Mainzer Teams ist besonders überraschend, da man bisher davon ausging, dass eine elektrische Verschaltung dazu dient, die zeitgleiche Aktivität von Nervenzellen zu fördern. Die mittels elektrischer Synapsen erzeugten Aktivitätsmuster zeigen neue Prinzipien der Informationsverarbeitung in Nervensystemen auf. Der gleiche Mechanismus könnte nicht nur bei Tausenden anderen Insektenarten, sondern auch im menschlichen Gehirn zum Einsatz kommen, wo die Funktion von elektrischer Verschaltung noch weitgehend unverstanden ist.

 

 

*******************************************************

Researchers at the Institute for Theoretical Biology at Humboldt Universität have solved a long-standing mathematical puzzle about the emergence of electrical activity patterns during insect flight. Together with colleagues at the Johannes Gutenberg University in Mainz, they report a novel function for electrical synapses in governing the flight of fruit flies in the current issue of Nature.

To keep their small bodies up in the air, fruit flies have to beat their wings extremely fast. They use a trick that is widespread in the animal kingdom: their nerve cells do not keep pace with the flapping of their wings. In order to control the flight muscles, each nerve cell rather generates an electrical pulse – also called action potential – only about every twentieth wing beat. This action potential, however, is precisely tuned to interact with other nerve cells. In a small circuit consisting of a few nerve cells, special activity patterns are generated: each cell regularly fires pulses, yet not at the same time as the other cells but rather spread out asynchronously at fixed intervals relative to each other.

In the fruit fly, such activity patterns have been known since the 1970s. Until now, their emergence was attributed to a connectivity of the nerve cells via chemical synapses. It was assumed that inhibitory messenger substances between nerve cells are released in response to action potentials, mutually preventing the cells from generating pulses at the same time. Using mathematical analysis, however, Prof. Susanne Schreiber's team has now been able to show that such pulse-distributed activity can also occur when the nerve cells are not connected chemically, but electrically – that is, without the use of messenger substances. In this case, the cells have to use a special kind of action potential that comes along with a high sensitivity to the inputs from others, especially when a cell has just been active. This type of sensitivity is not typical of ‘normal’ action potentials and, therefore, in the latter case no pulse-distributed activity is to be expected if the cellular coupling is purely electrical.

Experimental evidence for the type of pulse generation predicted by the Berlin researchers was provided by Prof. Carsten Duch's research group in Mainz. The scientists strengthened or weakened certain ionic currents in the cells of the fruit fly in order to change the type of action potentials that were generated. They were able to show that these manipulations influenced the activity patterns in the flight circuit exactly as predicted by the mathematical model. In addition, they proved that the connections among cells are indeed electrical and that knocking down this coupling has the expected effects on the activity patterns and wing beats of the animals.

The finding of the teams in Berlin and Mainz is particularly surprising, as it had so far been assumed that electrical coupling serves to promote the simultaneous activity of nerve cells. The activity patterns arising from electrical synapses reveal new principles of information processing in nervous systems. The same mechanism could be used not only in thousands of other insect species but also in the human brain, where the function of electrical coupling is still far from being understood.

Foto/picture: Silvan Hürkey

 

Originalpublikation/Publication

Hürkey S*, Niemeyer N*, Schleimer J-H, Ryglewski S, Schreiber S#, Duch C# (2023): Gap junctions desynchronize a neural circuit to stabilize insect flight. Nature. https://doi.org/10.1038/s41586-023-06099-0

*Equal contribution. #Shared corresponding authors.

 

Kontakt/Contacts

Institute für Theoretische Biologie (ITB) and Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin

Dr. Jan-Hendrik Schleimer, Tel.: +49 30 2093 98407, E-Mail: jh.schleimer@hu-berlin.de

Nelson Niemeyer, E-Mail: nelson.niemeyer@hu-berlin.de

Prof. Dr. Susanne Schreiber, E-Mail: s.schreiber@hu-berlin.de

 

Go back