Kanaka Rajan: How Brain Circuits Function in Health and Disease: Understanding Brain-wide Current Flow

Icahn School of Medicine at Mount Sinai, New York

Abstract

Dr. Rajan and her lab design neural network models based on experimental data, and reverse-engineer them to figure out how brain circuits function in health and disease. They recently developed a powerful framework for tracing neural paths across multiple brain regions— called Current-Based Decomposition (CURBD). This new approach enables the computation of excitatory and inhibitory input currents that drive a given neuron, aiding in the discovery of how entire populations of neurons behave across multiple interacting brain regions. Dr. Rajan’s team has applied this method to studying the neural underpinnings of behavior. As an example, when CURBD was applied to data gathered from an animal model often used to study depression- and anxiety-like behaviors (i.e., learned helplessness) the underlying biology driving adaptive and maladaptive behaviors in the face of stress was revealed. With this framework Dr. Rajan's team probes for mechanisms at work across brain regions that support both healthy and disease states-- as well as identify key divergences from multiple different nervous systems, including zebrafish, mice, non-human primates, and humans.

 

Guests are welcome!

 

Organized by

Tilo Schwalger / Margret Franke

 

BCCN Berlin Lecture Series Vimeo Channel

Click here to watch vimeo video of this talk.



Location: Virtual talk - you can watch a live-stream of the talk via the Vimeo link above

Go back