Thomas McColgan: Properties of axonal and synaptic extracellular field potentials in the barn owl
ITB/HU-Berlin
Extracellular field potentials (EFPs) recorded in the brain are an important indicator of neural activity for neuroscientists. In many cases, their physiological basis is unknown or debated. The barn owl auditory brainstem provides an excellent opportunity to study these EFPs and their origins. The barn owl auditory brainstem is ideal because the field potentials are very large and very easily controlled by the auditory stimulus, and the underlying anatomy is well known. Here I present two examples of exploiting the unique properties of the EFP in the barn owl auditory brainstem. The first is concerned with axons, where I show that activity in axon bundles with characteristic termination zones generates strong dipole moments. The second example is concerned with synaptic currents, from which I was able to extract a signature of short-term plasticity. The methods and insights I developed are applicable to other organisms as well, and contribute to the general understanding of the roles different anatomical structures can play in the generation of EFPs.
Additional Information
PhD defence
Organized by
Richard Kempter/Robert Martin
Location
BCCN Berlin, lecture hall, Philippstr. 13 Haus 6, 10115 Berlin